Three Valleys Municipal Water District 2015 WATER QUALITY REPORT TO TVMWD MEMBER AGENCIES

Ministeriore to the three valleys Mult	INICIPAL WATER DISTRICT'S MIRAMAR WATER I REATMENT PLANT IN THE WEYMOUTH MIRAMAR			•		NDARDS	
		EFFLUENT Range/Average	MIRAMAR EFFLUENT Range/Average	State MCL [MRDL]	PHG (MCLG)	State DLR	Major Sources in Drinking Water
					[MRDLG]		
SOURCE WATER		0	92.57	NA	NA	NA	
% of Groundwater			7.43	NA	NA	NA	
PRIMARY STANDARDS - Mand	atory H	ealth-Related Star	ndards				
CLARITY Combined Filter Effluent Turbidity	NTU	(highest) 0.5	(highest) 0.1	TT=1	NA	NA	Soil runoff
	% ≤ 0.3	100%	100%	TT (a)			
MICROBIOLOGICAL Total Coliform Bacteria (b)	%	ND - 0.2 / ND	ND	5.0	(0)	NA	Naturally present in the environment
<i>E.coli</i> (c)	(c)	distribution system-wide ND	distribution system-wide ND	(C)	(0)	NA	Human and animal fecal waste
Heterotrophic Plate Count (d)	CFU/ mL	distribution system-wide	distribution system-wide	TT	NA	NA	Naturally present in the environment
Cryptosporidium	Oocyst	ND	ND	тт	(0)	NA	Human and animal fecal waste
Giardia	200 L Cysts	ND	ND	тт	(0)	NA	Human and animal fecal waste
ORGANIC CHEMICALS	200 L						
Pesticides/PCBs Alachlor	<u>Units</u> ppb	ND	ND	2	4	1	L
Atrazine		ND	ND	2	4 0.15	0.5	Runoff from herbicide used on row crops
	ppb	ND	ND	1		0.5	Runoff from herbicide used on row crops and along highways
Bentazon	ppb	ND	ND	18	200 1.7	2	Runoff/leaching from herbicide used on rice, alfalfa, grapes
Carbofuran	ppb						Leaching of soil fumigant used on rice, alfalfa and grapes
Chlordane	ppt	ND	ND	100	30	100	Residue of banned insecticide
2,4-D	ppb	ND	ND	70	20	10	Runoff from herbicide used on row crops, range land, lawns and aquatic weeds
Dalapon	ppb	ND	ND	200	790	10	Runoff from herbicide used on rights of way, crops and landscapes
Dibromochloropropane (DBCP)	ppt	ND	ND	200	1.7	10	Banned nematocide that may still be present in soils due to runoff/leaching
Dinoseb	ppb	ND	ND	7	14	2	Runoff from herbicide used on soybeans, vegetables and fruits
Diquat	ppb	ND	ND	20	15	4	Runoff from herbicide used for terrestrial and aquatic weeds
Endothall	ppb	ND	ND	100	94	45	Runoff from herbicide used for terrestrial and aquatic weeds
Endrin	ppb	ND	ND	2	1.8	0.1	Residue of banned insecticide and rodenticide
Ethylene dibromide (EDB)	ppt	ND	ND	50	10	20	Discharge from petroleum refineries; underground gas tank leaks
Glyphosate	ppb	ND	ND	700	900	25	Runoff from herbicide use
Heptachlor	ppt	ND	ND	10	8	10	Residue of banned insecticide
Heptachlor Epoxide	ppt	ND	ND	10	6	10	Breakdown product of heptachlor
Lindane	ppt	ND	ND	200	32	200	Runoff/leaching from insecticide used on cattle, lumber, gardens
Methoxychlor	ppb	ND	ND	30	0.09	10	Runoff/leaching from insecticide uses
Molinate (Ordram)	ppb	ND	ND	20	1	2	Runoff/leaching from herbicide used on rice
Oxamyl (Vydate)	ppb	ND	ND	50	26	20	Runoff/leaching from insecticide uses
Pentachlorophenol (PCP)	ppb	ND	ND	1	0.3	0.2	Discharge from wood preserving factories, other insecticidal and herbicidal uses
Picloram	ppb	ND	ND	500	500	1	Herbicide runoff
Polychlorinated Biphenyls (PCBs)	ppt	ND	ND	500	90	500	Runoff from landfills; discharge of waste chemicals
Simazine	ppb	ND	ND	4	4	1	Herbicide runoff
2,4,5-TP (Silvex)	ppb	ND	ND	50	3	1	Residue of banned herbicide
Thiobencarb	ppb	ND	ND	70	70	1	Runoff/leaching from herbicide used on rice
Toxaphene	ppb	ND	ND	3	0.03	1	Runoff/leaching from insecticide used on cotton and cattle
Semi-Volatile Organic Chemicals							
Acrylamide	NA	TT	NR	TT	(0)	NA	Water treatment chemical impurities
Benzo(a)pyrene	ppt	ND	ND	200	7	100	Leaching from linings of water storage tanks and distribution mains
Di(2-ethylhexyl) adipate	ppb	ND	ND	400	200	5	Discharge from chemical factories
Di(2-ethylhexyl) phthalate	ppb	ND	ND	4	12	3	Discharge from chemical factories; inert ingredient in pesticides
Epichlorohydrin	NA	TT	NR	тт	(0)	NA	pesticides Water treatment chemical impurities
Hexachlorobenzene	ppb	ND	ND	1	0.03	0.5	Discharge from metal refineries & agrichemical factories;
Hexachlorocyclopentadiene	ppb	ND	ND	50	2	1	wastewater chlorination reaction by-product Discharge from chemical factories

Volatile Organic Chemicals							
Benzene	ppb	ND	ND	1	0.15	0.5	Plastic factory discharge; gas tanks and landfill leaching
Carbon Tetrachloride	ppt	ND	ND	500	100	500	Discharge from chemical plants and other industrial activities
1,2-Dichlorobenzene	ppb	ND	ND	600	600	0.5	Discharge from industrial chemical factories
1,4-Dichlorobenzene	ppb	ND	ND	5	6	0.5	Discharge from industrial chemical factories
1,1-Dichloroethane	ppb	ND	ND	5	3	0.5	Extraction & degreasing solvent; fumigant
1,2-Dichloroethane	ppt	ND	ND	500	400	500	Discharge from industrial chemical factories
1,1-Dichloroethylene	ppb	ND	ND	6	10	0.5	Discharge from industrial chemical factories
cis-1,2-Dichloroethylene	ppb	ND	ND	6	100	0.5	Industrial chemical factory discharge; biodegradation byproduct of TCE/PCE groundwater contamination
trans-1,2-Dichloroethylene	ppb	ND	ND	10	60	0.5	Industrial chemical factory discharge; biodegradation byproduct of TCE/PCE groundwater contamination
Dichloromethane (methylene chloride)	ppb	ND	ND	5	4	0.5	Discharge from pharmaceutical and chemical factories
1,2-Dichloropropane	ppb	ND	ND	5	0.5	0.5	Discharge from industrial chemical factories; primary component of some fumigants
1,3-Dichloropropene	ppt	ND	ND	500	200	500	Runoff/leaching from nematocide used on croplands
Ethylbenzene	ppb	ND	ND	300	300	0.5	Discharge from petroleum refineries; industrial chemical
Methyl-tert-butyl-ether (MTBE)	ppb	ND	ND	13	13	3	factories Gasoline discharge from watercraft engines
Monochlorobenzene	ppb	ND	ND	70	70	0.5	Discharge from industrial, agricultural chemical factories and
Styrene	ppb	ND	ND	100	0.5	0.5	dry-cleaning facilities Rubber and plastics factories discharge, landfill leaching
1,1,2,2-Tetrachloroethane	ppb	ND	ND	1	0.1	0.5	Discharge from industrial, agricultural chemical factories;
Tetrachloroethylene (PCE)	ppb	ND	ND	5	0.06	0.5	solvent uses Discharge from factories, dry cleaners and auto shops
Toluene	ppb	ND	ND	150	150	0.5	Discharge from petroleum and chemical refineries
1,2,4-Trichlorobenzene	ppb	ND	ND	5	5	0.5	
1,1,1-Trichloroethane	ppb	ND	ND	200	1000	0.5	Discharge from textile-finishing factories Discharge from metal degreasing sites; manufacture of food
1,1,2-Trichloroethane	ppb	ND	ND	5	0.3	0.5	wrappings
Trichloroethylene (TCE)	ppb	ND	ND	5	1.7	0.5	Discharge from industrial chemical factories
Trichlorofluoromethane (Freon 11)	ppb	ND	ND	150	1300	5	Discharge from metal degreasing sites and other factories Discharge from industrial factories; degreasing solvent;
1,1,2-Trichloro-1,2,2-trifluoroethane		ND	ND	1.2	4	0.01	propellant Discharge from metal degreasing sites and other factories;
(Freon 113)	ppm						dry-cleaning solvent; refrigerant Leaching from PVC piping; plastics factory discharge;
Vinyl chloride	ppt	ND	ND	500	50	500	biodegradation byproduct of TCE/PCE biodegradation
Xylenes	ppm	ND	ND	1.75	1.8	0.0005	Discharge from petroleum and chemical refineries; fuel solvent
INORGANIC CHEMICALS Aluminum	ppb	<u>88 - 200 / 156</u>	ND	1000	600	50	Residue from water treatment process; erosion of natural
Antimony	ppb	ND	ND	6	20	6	deposits Discharge from petroleum refineries; fire retardant; solder;
Arsenic	ppb	2.1	ND	10	0.004	2	electronics Erosion of natural deposits; glass & electronics production
Asbestos (e)	MFL	ND	ND	7	7	0.2	wastes Internal corrosion of asbestos cement pipes; erosion of
Barium	ppb	ND	ND	1000	2000	100	natural deposits Discharge of oil drilling wastes and from metal refineries;
Beryllium	ppb	ND	ND	4	1	1	erosion of natural deposits Discharge from metal refineries; aerospace and defense
Cadmium	ppb	ND	ND	5	0.04	1	industries Industries Internal corrosion of galvanized pipes; erosion of natural
Chromium		ND	ND	50	(100)	10	deposits Discharge from steel and pulp mills; erosion of natural
	ppb	ND	1	10	. ,	10	deposits Runoff/leaching from natural deposits; discharge from
Chromium VI (f)	ppb				0.02		industrical waste factories
Copper (g)	ppm	ND	ND	AL=1.3	0.3	0.05	Internal corrosion of household pipes; erosion of natural deposits
Cyanide	ppb	ND	ND	150	150	100	Discharge from steel/metal, plastic and fertilizer factories
Fluoride (h)	ppm	0.6 - 1.0 / 0.8 (treatment related)	0.21 (naturally occurring)	2	1	0.1	Erosion of natural deposits; water additive that promotes strong teeth
Lead (g)	ppb	ND	ND	AL=15	0.2	5	Internal corrosion of household pipes; erosion of natural deposits
Mercury	ppb	ND	ND	2	1.2	1	Erosion of natural deposits; discharge from factories; runoff from landfills
Nickel	ppb	ND	ND	100	12	10	Erosion of natural deposits; discharge from metal factories
Nitrate (as Nitrogen) (i)	ppm	ND	0.67	10	10	0.4	Runoff & leaching from fertilizer use; septic tank and sewage; erosion of natural deposits
Nitrite (as Nitrogen)	ppm	ND	ND	1	1	0.4	Runoff & leaching from fertilizer use; septic tank and sewage; erosion of natural deposits
Perchlorate (j)	ppb	ND	ND	6	1	4	Industrial waste discharge
Selenium	ppb	ND	ND	50	30	5	Refineries, mines and chemical waste discharge; runoff from livestock lots
Thallium	ppb	ND	ND	2	0.1	1	Leaching from ore-processing sites; factory discharge
RADIOLOGICALS		2014 (k)	2015				
Gross Alpha Particle Activity	pCi/L	ND - 4/ND	ND (p)	15	(0)	3	Erosion of natural deposits
Gross Beta Particle Activity	pCi/L	4 - 6 / 5	ND - 4.4 / 1.1	50 (I)	(0)	4	Decay of natural and man-made deposits
Combined Radium (i)	pCi/L	ND	ND (p)	5	(0)	NA	Erosion of natural deposits
Radium 226	pCi/L	ND	ND (p)	NA	0.05	1	Erosion of natural deposits
Radium 228	pCi/L	ND	ND (p)	NA	0.019	1	Erosion of natural deposits
Strontium-90	pCi/L	ND	0.680	8	0.35	2	Decay of natural and man-made deposits
Tritium	pCi/L	ND	40.4			L	2
	poi/L	ND	40.4	20,000	400	1,000	Decay of natural and man-made deposits
Uranium	pCi/L	2-3/3	40.4 ND (p)	20,000 20	400 0.43	1,000 1	Decay of natural and man-made deposits Erosion of natural deposits

DISINFECTION BY-PRODUCTS, DISINFECTANT RESIDUALS, AND DISINFECTION BY-PRODUCTS PRECURSORS

Total Trihalomethanes (TTHM)	ppb	17 - 66 / 39	26.2 - 68.6	80	NA	1	By-product of drinking water disinfection
		Distribution system-wide (m)	Distribution system-wide (m)				
Haloacetic Acids (HAA5)	ppb	1.7 - 20 / 17	5.36 - 17.40	60	NA	1	By-product of drinking water disinfection
		Distribution system-wide (m)	Distribution system-wide (m)				,
Total Chlorine Residual	ppm	1.1 - 3.0 / 2.4	2.32 - 2.97	[4.0]	[4.0]	NA	Drinking water disinfectant added for treatment
		Distribution system-wide	Distribution system-wide				
DBP Precursor Control (TOC)	ppm	TT	TT	TT	NA	0.30	Various natural and man-made sources; TOC sa a medium
							for the formation of disinfection byproducts

SECONDARY STANDARDS - A	estheti	c Standards					
Aluminum	ppb	88 - 200 / 156	ND	200	600	50	Residue from water treatment processes; natural deposits erosion
Chloride	ppm	98 - 102 / 100	75	500	NA	NA	Runoff/leaching from natural deposits; seawater influence
Color	units	1	ND	15	NA	NA	Naturally occurring organic materials
Copper (g)	ppm	ND	ND	1	0.3	0.05	Internal corrosion of household pipes; natural deposits erosion; wood preservatives leaching
Foaming Agents-MBAS	ppb	ND	ND	500	NA	NA	Municipal and industrial waste discharges
Iron	ppb	ND	ND	300	NA	100	Leaching from natural deposits; industrial wastes
Manganese	ppb	ND	ND	50	NL=500	20	Leaching from natural deposits
Methyl tert-butyl-ether (MTBE) (e,f)	ppb	ND	ND	5	13	3	Gasoline discharges from watercraft engines
Odor Threshold	TON	2	1	3	NA	1	Naturally occurring organic materials
Silver	ppb	ND	ND	100	NA	10	Industrial discharges
Specific Conductance	µS/cm	<mark>1,030 - 1,060 / 1,040</mark>	560	1,600	NA	NA	Substances that form ions when in water; seawater influence
Sulfate	ppm	252 - 261 / 257	75	500	NA	0.5	Runoff/leaching from natural deposits; industrial wastes
Thiobencarb (e)	ppb	ND	ND	1	70	1	Runoff/leaching from rice herbicide
Total Dissolved Solids	ppm	654 - 665 / 660	320	1,000	NA	NA	Runoff/leaching from natural deposits; seawater influence
Turbidity (a)	NTU	ND	ND	5	NA	NA	Soil runoff
Zinc	ppm	ND	ND	5.0	NA	0.05	Runoff/leaching from natural deposits; industrial wastes
OTHER PARAMETERS Alkalinity	200	123 - 129 / 126	81 - 88 /84.5	NA	NA	NA	
Aikaimity	ppm	123 - 129/120	61 - 66 /64.5	NA	NA	NA	Measure of water quality
Boron	ppb	120	210	NL=1,000	NA	100	Runoff/leaching from natural deposits; industrial wastes
Calcium	ppm	77 - 78 / 78	30	NA	NA	NA	Measure of water quality
Chlorate	ppb	104	ND	NL=800	NA	20	By-product of drinking water chlorination; industrial processe
Corrosivity (o) (as Aggressiveness Index)	AI	12.5	11.83	NA	NA	NA	Elemental balance in water; affected by temperature, other factors
Corrosivity (n)	SI	0.57	0.01	NA	NA	NA	Elemental balance in water; affected by temperature, other
(as Saturation Index)	nnm	200 204/200	100	NIA	NIA	NIA	factors

NA

NA

NA

NA

NA

NA

ΤТ

NL=50

NL=10

NL=1,000

NA

NA

NL=12

NL=.005

NA

NA

NA

NA

NA

NA

NA

NA

3

NA

NA

NA

NA

0.0007

NA

NA

NA

NA

100

NA

0.30

3

2

0.5

3

3

2

0.005

Measure of water quality

of disinfection byproducts

Industrial waste discharge

Used as gasoline additive

Used as gasoline additive

all soils

Naturally occurring, comes from decay of uranium in nearly

Various natural and man-made sources; TOC as the formation

By-product of drinking water chlorination; industrial processes

MTBE breakdown product; used as gasoline additive

Industrial solvent anddegreasing/ cleaning agent; found in

Naturally occurring; industrial waste discharge

Trichloropropane (1,2,3-TCP)

tert-Butyl alcohol (TBA)

Ethyl-tert-butyl-ether (ETBE)

tert-Amyl-methyl-ether (TAME)

Dichlorodifluoromethane (Freon 12)

Total organic carbon (TOC)

N-Nitrosodimethylamine

Hardness (as CaCO₃)

Magnesium

Potassium

Radon (k)

Vanadium

(NDMA)

Sodium

pН

ppm

ppm

pН

units

ppm

pCi/L

ppm

ppm

ppb

ppt

ppb

ppb

ppb

ppb

ppb

296 - 304 / 300

26 - 28 / 27

8.1

4.8 - 5.0 / 4.9

ND

97 - 102 / 100

2.4 - 2.8 / 2.6

ND

ND

ND

ND

ND

ND

NC

100

7.2

8.27 - 8.79 / 8.57

2.2

NR

72

1.2

5.4

ND

ND

ND

ND

ND

ND

Aggressiveness Index	ND								
	ND	= None Detected							
= Action level	NL	= Notification Level							
= Colony Forming Units per milliliter	NR	= Not Required							
= Disinfection By-Products	NTU	= Nephelometric Turbidity Units							
= Detection Limits for Purposes of Reporting	pCi/L	= PicoCuries per liter							
= Locational Running Annual Average; highest	PHG	= Public Health Goal							
LRAA is the highest of all Locational Running	ppb	= parts per billion or micrograms per liter (ug/L)							
Annual Averages calculated as average of all	ppm	= parts per million ormilligrams per liter (mg/L)							
samples collected within a 12-month period	ppq	= parts per quadrillion or picograms per liter (pg/L)							
= Maximum Contaminant Level	ppt	= parts per trillion or nanograms per liter (ng/L)							
= Maximum Contaminant Level Goal		= Running Annual Average; highest RAA is the highest of all Running Annual Averages							
= Maximum Residual Disinfectant Level	Si	= Saturation Index (Langelier)							
= Maximum Residual Disinfectant Level Goal	TON	= Threshold Odor Number							
= Most Probable Number	TT	= Treatment Technique is a required process intended to reduce the level of a contaminant in							
= Not Applicable									
= Not Collected									
As a Primary Standard, the turbidity level of the filte	ered water were less t	han or equal to 0.3 NTU in 95% of the measurements taken each month and shall not exceed							
1.0 NTU at anytime. Turbidity is a measure of the cloudiness of water and is a good indicator of treatment performance.									
Total coliform MCLs: No more than 5.0% of the monthly samples may be total coliform positive. Compliance is based on the combined distribution system. sampling. In									
2015, 7,509 samples were analyzed from MWD (3 samples were positive for total colifoms) and samples were analyzed from TVMWD (0 samples were positive for									
E. coli MCL: The occurrence of two consecutive total coliform-positive samples, one of which contained E. coli, constitutes an acute MCL violation. The MCL was not									
All distribution system samples collected had detectable total chlorine residuals and no HPC was required. HPC reporting level is 1 CFU/ml. Values are based on									
Data are from samples collected in 2011 for MWD and are reported once every nine-year compliance cycle until the next samples are collected. Data for TVMWD is									
MWD's chromium VI reporting level is 0.03 ppb which is below the state DLR of 1 ppb. Data above MWD's reporting level and below the DLR are reported as ND in this									
report-available upon request.									
As a wholesaler, MWD and TVMWD are not require	ed to collect samples	at the consumers' tap under the Lead and Copper Rule. Lead and copper results are from							
MWD and TVMWD were in compliance with all provisions of the State's Fluoridation System Requirements. Starting June 1, 2015 the fluoride leves at the Weymouth									
Plant was adjusted to achieve an optimal fluoride level of 0.7 ppm and a control range of 0.6 ppm to 1.2 ppm to comply with the existing Stat's Water Fluoridation									
State MCL is 45 ppm as nitrate, which is the equiva	alent of 10 ppm as N.								
MWD's perchlorate reporting level is 0.1 ppb which	is below the state DL	R of 4 ppb. Data above MWD's reporting level and below the DLR are reported as ND in this							
report-available upon request.									
MWD data are from samples collected (triennially)	during four consecutiv	e quarters of monitoring in 2014 and reported for three years until the next samples are collected.							
Compliance was based on the highest Locational Running Annual Average (LRAA) of all data collected at distribution system-wide monitoring locations. Results are									
SI measures the tendency for a water to precipitate or dissolve calcium carbonate (a natural mineral in water). Water with SI <-2.0 is highly corrosive and would be									
51		ater with AI <10.0 is highly aggressive and would be very corrosive to almost all materials found							
		utive quarters of monitoring in 2014 and reported for three years until the next samples are							
	 = Disinfection By-Products = Detection Limits for Purposes of Reporting = Locational Running Annual Average; highest LRAA is the highest of all Locational Running Annual Averages calculated as average of all samples collected within a 12-month period = Maximum Contaminant Level = Maximum Contaminant Level Goal = million fibers per liter = Maximum Residual Disinfectant Level Goal = Most Probable Number = Not Collected As a Primary Standard, the turbidity level of the filter 1.0 NTU at anytime. Turbidity is a measure of the Total coliform MCLs: No more than 5.0% of the mit 2015, 7,509 samples were analyzed from MWD (3 <i>E. coli</i> MCL: The occurrence of two consecutive to All distribution system samples collected in 2011 for MWD MWD's chromium VI reporting level is 0.03 ppb wh report-available upon request. As a wholesaler, MWD and TVMWD are not require MWD and TVMWD were in compliance with all pro Plant was adjusted to achieve an optimal fluoride lestate MCL is 45 ppm as nitrate, which is the equival MWD's perchlorate reporting level is 0.1 ppb which report-available upon request. MWD data are from samples collected (triennially) DDW considers 50 pCi/L to be the level of concern Compliance was based on the highest Locational FSI measures the tendency for a water to precipitate corrosive to almost all materials found in a typical vatar system. Al ≥ 12.0 indicates non-TVMWD data are from samples collected (triennial) 	= Disinfection By-ProductsNTU= Detection Limits for Purposes of Reporting pCi/L = Locational Running Annual Average; highest PHG LRAA is the highest of all Locational Running ppb Annual Averages calculated as average of all ppm samples collected within a 12-month period ppq = Maximum Contaminant Level ppt = Maximum Contaminant Level Goal RAA = million fibers per literRAA= Maximum Residual Disinfectant Level GoalTON= Most Probable NumberTT= Not Applicable \muS/cm = Not CollectedUAntu a anytime.Turbidity level of the filtered water were less the total colliform MCLs: No more than 5.0% of the monthly samples may be 2015, 7,509 samples were analyzed from MWD (3 samples were positive <i>E. coli</i> MCL: The occurrence of two consecutive total colliform-positive so All distribution system samples collected in 2011 for MWD and are reported onceMWD's chromium VI reporting level is 0.03 ppb which is below the state I report-available upon request.As a wholesaler, MWD and TVMWD are not required to collect samples as the MCL is 45 ppm as nitrate, which is the equivalent of 10 ppm as N.MWD's perchlorate reporting level is 0.1 ppb which is below the state DL report-available upon request.MWD data are from samples collected (triennially) during four consecutive DDW considers 50 pCi/L to be the level of concern for beta particles.Compliance was based on the highest Locational Running Annual AveraSI measures the tendency for a water to precipitate or dissolve calcium corrosive to almost all materials found in a typical water system. Al ≥ 12.0 indicates non-							

revised 3/30/16